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About This Journal

1 The Purpose of the Journal

Communications of the Blyth Institute was founded due to
needs both within The Blyth Institute as well as needs in the
wider research community. As The Blyth Institute has grown,
it has become more difficult to share and disseminate research
and ideas for research within our own community. Mailing lists
are ephemeral, blogs are trite and difficult to cite in later re-
search, and forums tend to be worse on both accounts. There-
fore, this journal was established to provide a means of com-
municating ideas that is more formal than conversation, but
also more expeditious than other journals.

Likewise, in the wider research community, ideas often need
time as well as participation to grow. That is, the first iter-
ation of an idea, even of a great idea, is often fraught with
problems that need to be ironed out. Most journals quite
reasonably want to have ideas more fully formed before publi-
cation. However, sharing ideas informally prior to publication
increases the risk for researchers of others taking credit for
their ideas.

Therefore, Communications of the Blyth Institute fills a role for
creating a space for the formal publication and peer review of
inchoate ideas, both inside and outside of The Blyth Institute.

2 Paper Submission Policies

2.1 Submitting to the Journal

Because the primary goal of Communications is to serve the
membership of The Blyth Institute, all submissions must either
be by a Blyth Institute member or be sponsored by a Blyth In-
stitute member. “Sponsorship” in this case merely means that
the Blyth Institute member believes that the paper is worth
considering by members of The Blyth Institute. The spon-
soring member does not have to have any official association
with the paper. If someone who is not a member of The Blyth
Institute wishes to submit a paper for consideration, all that is

needed is for them to submit the paper to someone who is a
Blyth Institute member and ask that they sponsor it for you.
The sponsoring member will then submit it on your behalf.

Members of The Blyth Institute may submit their ideas to
communications@blythinstitute.org.

2.2 Submission Review Process

Communications employs a prompt review process for formal
papers submitted to the journal. The editor will appoint one or
more reviewers to review the paper. Reviewers will review the
paper to verify that the paper fulfills the following qualities:

• The idea is original (unless explicitly marked as a review
paper).

• The idea is of interest to either Blyth Institute members
or the wider research community.

• The author makes reasonably clear distinctions between
assumption, fact, inference, proposal, opinion, and con-
jecture.1

• The author presents reasonable data and evidence for
their conclusions.

Additionally, reviewers should provide commentary on the
ideas themselves. Reviewers may weigh in as to whether the
paper should be published, though ultimate publication au-
thority lies with the editor.

Authors will then be given a chance to revise their paper and
respond to the comments and cricitisms of the reviewers. The
editor will then make a final determination for publication.

1Because this journal focuses on more inchoate ideas, we want readers
to be clear how well-founded each part of the author’s proposal is. The
goal isn’t to make an overly-wordy paper, but simply to make sure readers
are appropriately informed as to the levels of confidence that should be
attached to various ideas presented in the paper.
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2.3 Scope of the Journal

The scope of the journal is not strictly limited. The Blyth Insti-
tute is a loose consortium of researchers scattered throughout
the world, with many diverse interests. The main focus of The
Blyth Institute has been in non-reductionist perspectives on bi-
ology and cognition. While this will likely remain the focus of
the journal, any topic that a Blyth Institute member thinks
that other Blyth Institute members will benefit from can be
included. Communications accepts papers in a wide variety of
fields including most sciences, mathematics, and philosophy.

The editors have the final say for inclusion and exclusion for
the journal.

2.4 Formatting Papers for Submission

Ideally, papers should be submitted in LATEX format using an
“article” document class. Because the journal is presently run
entirely by volunteers, we request that papers utilize a mini-
mum of LATEX trickery, focusing instead on basic LATEX features
to simplify inclusion in the journal.

If you are unfamiliar with LATEX, you may submit your file as a
Word document (.doc or .docx). Please keep formatting to a
minimum, and submit all figures and tables as separate files.

For smaller submissions such as news items, letters, and notes,
feel free to simply email them directly as text.

3 Other Journal Content

3.1 Student Papers

The Blyth Institute has always recognized the importance of
enabling the next generation of researchers. As such, we wel-
come contributions from students. The Blyth Institute recog-
nizes that students do not always research and write on the
same level as more established researchers, as their breadth of
experience and knowledge is not the same.

Therefore, The Blyth Institue will also allow papers from stu-
dents that undergo a lighter level of review, and for which our
standards are relaxed. These papers will be marked as “Stu-
dent Papers.” Any student is free to make regular submissions
as well. Readers should be aware, however, that papers marked
as student papers will have relaxed standards applied.

3.2 Letters and Notes

Communications will also publish letters and notes sent to the
editor. These letters and notes can be for a variety of purposes,
including but not limited to (a) responding to a previously pub-
lished Communications paper, (b) responding to publications
elsewhere, (c) responding to news events or cultural aspects of
science, and (d) communicating short ideas that have not yet
been developed into paper-length submissions. Letters and
notes are primarily reviewed by the editors, but the editors,
at their discretion, can request additional review from other
sources.

3.3 Tutorials and Reviews of Fundamentals

In addition to typical reviews covering the latest results in a
field, Communications also publishes tutorials and reviews of
the fundamentals of a field, aimed at providing experts in other
fields information that they may need for cross-disciplinary
work. Tutorials focus on the performing of a task while a
fundamentals review focuses more on concepts.

3.4 Book Reviews

Communications encourages the submission of book reviews,
especially by newer contributors. Book reviews are an excellent
way for new researchers to both gain knowledge in their field as
well as publication experience. Book reviews for Communica-
tions should include both summaries and critical engagement
with the material. The books should be scholarly works which
would be of interest to Blyth Institute members.

3.5 News Items

Communications also supplies a news section. This section
will include news about The Blyth Institute itself, as well as
anything that Blyth Institute members find interesting and
worth sharing with other members. If you are a member of
The Blyth Institute, notices of peer-reviewed papers published
elsewhere will appear within the news section.
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From the Editors

To start our third year at Communications of the Blyth Insti-
tute (CBI), we want to say a word of thanks to our contributors
and our readers. Our growing contributor and reader base has
helped make CBI successful.

Looking at our download statistics, our most downloaded pa-
per was the paper featured in our first issue, Albert de Roos
(2018) “A Proposed Framework for Cellular Evolution,” while
the paper with the most overall interest was Steve Dilley and
Nicholas Tafacory (2019) “Damned if You Do and Damned
if You Don’t.” We have had many papers receive over a
thousand downloads from the website. The paper with the
most citations so far is Jonathan Bartlett and Eric Holloway
(2019) “Generalized Information: A Straightforward Method
for Judging Machine Learning Models.” That paper has been
cited in Ph.D theses, AI books, and even some biology journals
(BMC Biology and BIO-Complexity).

One of the goals of CBI is to be an incubator for new ideas.
Several authors have already used CBI in such a way. Sev-
eral CBI papers by Eric Holloway became the foundation for
a paper he co-authored with David Nemati, “Expected Algo-
rithmic Specified Complexity.” Hunter’s “The Random Design
Argument” was a foundation for his later paper “On the In-
fluence of Religious Assumptions in Statistical Methods Used
in Science.”

The letters section of CBI is intended as a discussion forum
to help researchers develop new ideas and comment on each
others work. We have seen that happen with the discussions
around Bartlett, Gaastra, and Nemati (2020) “Hyperreal Num-
bers for Infinite Divergent Series,” for which we have had let-
ters from multiple scholars noting how that methodology can
be used for analyzing various problems.

Though we are an admittedly small journal, we want to thank
the contributors and readers for giving us an outsized success.

Sincerely,

—The Editors
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When is Explanation Transitive? A Methodological Note
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Abstract
The article considers the following explanatory-
transitivity question: assume that A explains B and B
explains C: does A also explain C? In the present paper
the term explanation signifies causal explanation. The
discussion of this question arrives at the answer that
a necessary condition for explanatory-transitivity can
be proposed. Accordingly, if B explains observation O
(bEo) and A explains B (aEb), then A also explains
O (aEo), when: if the same E is not preserved in the
three expressions (bEo, aEb, aEo) then the transitivity
of E will not be preserved. This answer is supported
by an analysis of a large number of examples. The
article also analyzes the relations among explanation,
reduction and transitivity.
Keywords: methodology, explanation, transitivity

1 Introduction

The question discussed by this article is this: assuming that A
explains B and B explains C, does A also explain C? In other
words, does the relation of explanation E uphold transitivity?
This is a very difficult question to answer, since there are many
different models of explanation (for review see Psillos, 2007;
Rakover, 2018; Salmon, 1990; Woodward, 2011). Hence, a
qualification is needed. While an explanatory model based on
deduction (such as the Hempel’s D-N model) does realize the
transitivity requirement (if A is deduced from T and T is de-
duced from T*, then A is also deduced from T*), other models
do not always do so. A major purpose of the present paper is
to show that an explanatory model based on the concept of
causality (e.g., Salmon’s 1984 causal-mechanical model which
is based on the concept of causal process) meets the transi-
tivity requirement under special condition as described below.
(Note that hereinafter the term ”explanation” signifies causal
explanation.)1

1The concept of causality is very complex and is under continuous
debate in the philosophical literature. Hence, its discussion here is beyond
the purpose of this note. We shall delineate the concept in the following

To answer our opening question, we shall first discuss briefly
the concept of transitivity, and then, based on this discussion,
we shall deal with the question considered by the article. While
the transitive relation is dealt with in the theoretical realm, the
explanation relation is dealt with in the empirical realm. When
one deals with empirical relations it is not always clear whether
one is dealing with unidimensional or multi-dimensional rela-
tions, and whether the same relation holds in all comparisons.
Hence, one may view our question in the following way: does
the theoretical concept of transitivity hold in the empirical do-
main? To answer, we have to check whether transitivity holds
in reality, which can be determined by means of the process of
measurement and realization. This discussion is methodolog-
ical in the main, because E (explain) in science applies to the
connection between theories and empirical observations, that
is, between the explanans (the explainer) and the explanan-
dum (the to-be-explained).

The theoretical requirement for a transitive relation is: if x
relates to y by the relation R (expressed by xRy) and y relates
to z by the same relation R (yRz), then x relates to z by the
same relation R (xRz). In other words, for all events x, y, z,
when the three expressions xRy, yRz and xRz obtain, then R
displays the property of transitivity. As mentioned above, this
requirement is accepted in theory. However, its application to
reality may cause some problems especially when the relation
among x, y, z, is not unidimensional, for example, stronger
than, prettier than, smarter than. As we shall see, the ap-
plication of the theoretical term transitivity to the empirical
realm scientific explanation is complex. We attempt to show
that when one applies the term transitivity to reality, it fulfills
the requirements of a necessary condition (that the same re-
lation R appears in the three expressions xRy, yRz and xRy)
but not those of a sufficient condition.

Given the above clarification, we shall now analyze several
examples while emphasizing the application of this theoretical
term to the empirical realm.

Let us study the relation “higher than” (H): H is transitive

way: it is considered as an answer to, explanation of, the question ’why’.
It proposes that event B (the effect, the phenomenon under investigation)
depends on a preceding event A (the cause), when both events are close
in time and space and show invariable correlation.

https://dx.doi.org/10.33014/issn.2640-5652.3.1.rakover.cahlon.1
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when x is higher than y, xHy, and yHz, then xHz for every
x, y, z.2 If one does not assume axiomatically that the same
H appears in the three expressions among x, y, z and displays
transitivity, the following methodological question arises in the
empirical realm: how can one be certain that H is indeed
transitive? The answer is as follows: we ensure this by using
the same procedure of measuring the height of x, of y and of
z. The results of the measurement show that indeed it is the
case that if x is higher than y and y is higher than z, then x
is also higher than z, i.e., the transitivity relation applies to
the present case. Similar results are obtained for the relation
“heavier than” (measurement is taken on scales) and “older
than” (measurement is by means of time). However, as we
shall see below, there are several cases in the real world that
do not uphold transitivity.

As may be seen from the above examples, the same R (rela-
tion) is ascertained in the three comparisons (xRy, yRz, xRz)
by means of a valid and reliable measurement, namely a pro-
cess that measures only what it is supposed to measure and
gives the same measurement at different times. When R is not
the same, transitivity is not preserved because the relations in
the three expressions deal with different matters and different
subjects. For example, take the relation “prettier than”: x
is prettier than y and y is prettier than z—but in many cases
people will judge z prettier than x! Why? Because the relation
“prettier than” is not identical in all the three expressions. For
example, the judgment is that x is prettier than y because of
her hair, and y also is prettier than z because of her hair, but z
is prettier than x because of her wonderful eyes. And another
example: assuming that x is taller than y and y is prettier than
z, we shall not be surprised that z is taller than x! For example,
x’s height is 1.80 m and y’s is 1.70 m, but z’s height is 1.90 m;
z is plain looking while y is beautiful. Based on these exam-
ples, it may be suggested that the same R must appear in the
three expressions, because if it changes in one of them, then
as we have illustrated above transitivity will not be preserved.
Here is an example taken from the world of sport, which illus-
trates that causal transitivity is not always preserved. David
defeated Max in a wrestling contest; Max defeated Dan in a
boxing contest; however, Dan defeated David in a wrestling
contest. How is this possible? One interpretation is as follows:
David is a mediocre wrestler; Max is an excellent boxer and
Dan is an outstanding wrestler. Hence, we are dealing here
with two different relations: one is connected to wresting and
the other to boxing and transitivity is not preserved.

2In many cases we transform properties and actions into relations. For
example, we transform the property “height” into the relation “higher
than,” and the action “preference” into the relation “prefer x more than
y.”

1.1 Preservation of R and transitivity

The question arising here is this: is the requirement of the ex-
istence of the same relation in the three expressions a sufficient
condition or a necessary condition for transitivity? In our view
the answer is that the requirement is necessary because it can
be shown that transitivity is not always preserved even though
the same R appears in the three expressions. We may examine
the ”threshold relation”. Assume that a certain threshold rela-
tion holds when Threshold Relation (T) obtains. This relation
holds if the multiplication of two of its three values (x, y, z) is
larger than or equal to 0.5 (i·j ≥ 0.5). (The values arise from
the following dimension: 0.0…0.5…1.0.) Assume the following
values: x=0.7, y=1.0, z=0.6. And now, may one propose that
because the relation is held in the following two expressions:
xTy =0.7, where T indicates the multiplication function, and
yTz =0.6, the relation will hold in the interaction xTz? The
answer is negative, because xTz = (0.7)(0.6) = 0.42 < 0.5,
therefore transitivity is not preserved.

In light of the present discussion, the following proposal may
be raised: a necessary condition for transitivity to be preserved
is that the same R be preserved in the three expressions: xRy,
yRz, and xRz, for every x, y, z. That is, if relation R is
not maintained in the three expressions transitivity is not pre-
served.

1.2 Transitivity and dimensionality

Based on the foregoing analysis it seems possible to make
two proposals concerning the transitivity that appears in one-
dimensional phenomena (e.g. a straight line in geometry) and
in multi-dimensional phenomena (e.g., a plane or a cube in
geometry).

• Proposal (a): When R is applied to a one-dimensional
phenomenon (height, weight, time) transitivity will be
preserved. To illustrate this proposal let us examine once
again the relation H. Given xHy and yHz, is it possible
that xHz will not obtain? The answer is negative for this
reason: given that H can be expressed as follows: xHy is
stated by (x-y)>0, yHz by (y-z)>0 and xHz by (x-z)>0,
then [(x-y)+(y-z)=(x-z)]. That is, if xHy and yHz, then
xHz.
This support notwithstanding, a case can be brought that
contradicts proposal (a). It is possible to interpret the
threshold relation described above in such a manner that
it will contradict proposal (a). According to this interpre-
tation, the threshold relation is a one-dimensional whose
values are between 0.0 and 1.0. And because xTz < 0.5,
although xTy > 0.5 and yTz > 0.5, transitivity does not
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occur in this one-dimensional. Therefore, it is not possible
to state that one-dimensionality is a sufficient condition
for preserving transitivity.

• Proposal (b): Contrary to (a), when R is applied to
a multi-dimensional phenomenon transitivity is not nec-
essarily preserved (for instance, see the above example
“prettier than”). It is hard to support this suggestion,
because many phenomena, such as speed or acceleration,
are multi-dimensional but display transitivity. (E.g., if in a
racecar competition car A reaches the finishing line faster
than car B and car B faster than car C, then car A has
finished the race faster than car C. Note that in this illus-
tration even though speed is defined multi-dimensionally
by distance and time, the speed itself is expressed as a
one-dimensional number.) And in complete contrast, in
a large number of phenomena (prettier than, preference
for goods, victory in a sports competition such as soccer,
etc.) transitivity is not always preserved. (The appendix
gives some examples and proofs for the fact that relations
applied to multi-dimensional phenomena may sometimes
preserve transitivity and sometimes not.)
Applying the distinction between descriptive and norma-
tive models in science to our concerns, we may suggest
that the empirical approach to transitivity that we posit
here is descriptive. According to Bell, Raiffa, and Tversky
(1988), who discuss decision making, a normative model
offers a rational way whereby people must make deci-
sions; and a descriptive model describes the way people
make decisions in practice. Most decision-making mod-
els that assume that people will behave rationally assume
that their decisions will be transitive: if A is preferred to
B and B is preferred to C, then A will be preferred to C.
It transpires that in many cases people behave in keeping
with this assumption.

2 Explanatory-transitivity

On the basis of the discussion so far, it may be suggested that
E is transitive if it meets the following requirement, called
explanatory-transitivity:

If B explains observation O (bEo) and A explains B
(aEb), then A also explains O (aEo), when: (a) if
the same E is not preserved in the three expressions
(bEo, aEb, aEo) then the transitivity of E will not be
preserved; (b) at least one realization of E may be
posited (B symbolizes a hypothesis or simple theory
and A symbolizes a broader and deeper theory).

The present requirement of explanatory-transitivity acts as a

necessary condition because the above discussion showed by
several examples that transitivity is not preserved when R is
not preserved in the three expressions.

To substantiate this statement, we shall analyze several exam-
ples that preserve transitivity and several that do not.

2.1 Example: Free Fall

Galileo’s law explains the free fall of bodies; Newton’s the-
ory explains Galileo’s law; and Newton’s theory also explains
the free fall of bodies. The fall of bodies may be explained
by means of Galileo’s law when the D-N model is used (see
Hempel, 1965); Galileo’s law can be explained by means of
Newton’s theory when in this case also the D-N model is used
(i.e. by means of this model it is possible to explain particular
facts and also general regularities. Still, it is worth stressing
here that what is derived from Newton’s theory is a very good
approximation of Galileo’s law, and that only in proximity to
the earth does gravitation behave as a constant); and New-
tonian theory explains the fall of bodies by means of the D-N
model. In all these relations it is possible to meet the re-
quirement of explanatory-transitivity by the D-N model when
inserted into it are the proper law or theory and empirical con-
ditions, and when what stems from this model corresponds
to the empirical observation or to the empirical generalization
(Galileo’s law).

2.2 Example: Pool Balls

A chain of events on the pool table is offered as an example
of causal transitivity (e.g. Halpern, 2016). For example, three
balls are on the table. The eight-ball is near the upper right-
hand pocket; the seven-ball is approximately in the middle
of the table; the (white) cue ball is in the lower part of the
table. (a) The cue strikes (S) the cue ball (c) which strikes
the seven-ball (7) (cS7); (b) the seven-ball strikes the eight-
ball (8) and pockets it (7S8). Is transitivity preserved here?
That is, is cS8 realizable? The answer is affirmative. Namely,
the requirement that the cue ball, which has been struck by
the cue, directly strike and pocket the eight-ball is realizable.
Furthermore, pocketing the eight-ball in the corner pocket is
realizable in various colorful ways—some of them entertaining
(depending on the pool player’s virtuosity).

2.3 Example: The Handgun

This example has the following chain of events. (a) The trigger
of the handgun is squeezed and activates the hammer which
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strikes the cap. (b) The strike on the cap explodes the mercury
fulminate inside, which ignites the gunpowder in the bullet’s
cartridge. (c) The gases created in the ignited cartridge expel
the bullet from the gun’s barrel over an effective range of
about 25 meters. These events may be expressed by means
of causal explanations: aE1b (pressure on the trigger explodes
the gunpowder in the cartridge); bE2c (the gases formed as a
result of the explosion in the cartridge propel the bullet from
the gun’s barrel over an effective range of about 25 meters).
That is, the explanations E1, E2 are different (mechanical,
chemical/physical) and transitivity is not preserved. It is hard
to see how pressure on the trigger in itself will propel the bullet
an effective distance of about 25 meters.

2.4 Example: A Mother Of

The relation “a mother of” is considered a clear example of
absence of transitivity. Why? Because if A is the mother of
B, and B is the mother of C, then it is not possible for A
to be the mother of C. However, it is possible to conjecture
several situations in which the notion of motherhood changes
in such a manner that in the new framework with new possible
realizations transitivity is preserved. For example, it is possible
to expand the concept of motherhood beyond the biological
function and to speak of a mother who raises and educates the
child. A situation can be imagined where immediately after
the birth B died and A raised and educated C all her life from
the moment of birth; or a case where B died of a serious illness,
but before that her fertilized egg was implanted in A, so that
A gave birth to C, and also raised and educated her. In these
cases, it seems that realization of the aims of motherhood has
been preserved, as well as transitivity.

2.5 Mechanistic vs. Theoretical (M/T)
transitivity

The three foregoing examples—“pool ball,” “handgun,” and
“a mother of”—are illustrations of empirical phenomena about
which it may be asked What is the causal mechanism respon-
sible for their occurrence? In this connection we may raise the
question of transitivity: is the first event which activates the
mechanism (the strike of the cue; the squeezing of the trigger;
A is the mother of B) until the occurrence of the concluding
event (pocketing the eight-ball; propulsion of the bullet from
the barrel; birth, education, and raising of the infant C) likely
in itself to cause the occurrence of the concluding event? By
contrast, the illustrations of higher than, heavier than, lasts
much longer than, do not deal with occurrences that can be
explained by a causal mechanism. There is no causal connec-
tion between the height of x, of y and of z in the sense that

x influenced the height of y, or the reverse. The transitivity
question in the present case stems from the theoretical struc-
ture present in the observer’s cognitive system. For example,
the observer sees x, y, z, grasps through measuring that these
three objects differ in height, that x is taller than y, y is taller
than z, and finds that x is taller than z. It seems that xHz is
unrelated to any mechanism that connects these three objects.
(For a similar interpretation see Jones, 2000.)

The difference in the M/T transitivity explanation, namely
the distinction between the first three and the last three phe-
nomena, is that for an understanding of the transitivity in
the former phenomena an explanation resting on the causal
mechanism is suitable, while for the latter phenomena a the-
oretical, non-causal, explanation is suitable. To highlight this
difference, we offer another example, the square and the cir-
cle, which will substantiate transitivity based on geometrical
considerations. We may look at the following relations: (a)
before us is a hard surface in which there is a round hole, c1,
of diameter d1, and a rigid square s of diagonal h. The square
will go through the circle when d1 > h; (b) before us is a rigid
surface in which is a square hole s, of side s (and diagonal h)
and a rigid circle, c2 of diameter d2. The circle will go through
the square when s>d2; (c) will c2 go through c1? The answer
is affirmative because (d1 > h > s > d2) obtains.

3 Discussion

In this section we briefly discuss three matters: first, we ex-
amine the main issue of the present paper: can one apply the
theoretical concept of transitivity to the domain of scientific
explanation of empirical phenomena? Secondly, we examine
what the present approach has to say about an example con-
cerning the absence of transitivity in Halpern (2016); thirdly,
many researchers have suggested that a phenomenon acquires
an explanation when it is possible to reduce it to basic com-
ponents (e.g. Jones, 2000). Because in science there is an in-
teresting connection between giving an explanation and reduc-
tion, we shall try to grasp the connection between the present
approach to explanatory-transitivity and scientific reduction.

3.1 Application of the concept of transitivity

Does the application of the transitivity-concept depend on cer-
tain internal properties of the events to be explained? For
example, the relation “heavier than” is about a certain prop-
erty of the events discussed. Thus if David is heavier than
John and John is heavier than Dan, then David is heavier
than Dan. However, the relation “a distance greater than” is
not a property of the event (object) under discussion. In this
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case the relation of transitivity depends on the geometrical
structure of the three events under discussion. For example,
if the three events are lined up, then transitivity holds. So
if the distance between David and John is greater than the
distance between John and Dan, then the distance between
David and Dan is the greatest. However, if the three events
are arranged in a triangle, then in many cases transitivity does
not hold. What does this discussion imply for the application
of the transitivity-concept to explanation? Suppose one wishes
to explain the phenomenon regarding “heavier than.” We be-
lieve that there will be no problem to propose a theory that
explains why David’s weight is 90kg, John’s weight is 80kg
and Dan’s weight is 70kg. Given that the same explanation
holds for all these three events, then according to the pro-
posal of necessary condition, “explanatory-transitivity,” there
is no obstacle to applying the transitivity-concept successfully
here. However, the situation is a bit more complicated with
regard to the “a distance greater than.” Suppose that one
may construct a geometrical theory explaining why the dis-
tance between David and John is greater than the distance
between John and Dan. Can this theory explain why the dis-
tance between David and Dan is the greatest? The answer is
yes. Since the theory is geometrical, it will be able to specify
when the answer is yes (transitivity holds, since the three are
lined up) and when in many cases the answer is no (transitivity
does not hold, since the three are not lined up).

Another question regarding the present topic is the following:
can one apply the concept of transitivity to empirical expla-
nation when the transitivity is based on a combination of re-
lations?3 In many cases the explanation of a phenomenon
is based on a combination of different causes and mecha-
nisms. Take for example the handgun example discussed
above. Clearly the explanation for the expulsion of the bul-
let from the gun is complex and based on different mecha-
nisms and theories. Therefore, according to our proposal of
“explanatory-transitivity,” transitivity is not preserved in this
case.

Another example of a combination of relations is the possibil-
ity of disjunction. Consider the following relation “faster or
smarter”: A is faster and smarter than B and B is faster than
C, but as it turns out C is the smartest. One may construct
a theory for speed of action and another theory for smartness
and explain by these theories why A is faster and cleverer than
B and why B is faster than C (when on the cleverness scale the
two are ranked unequally) and why C is cleverer than A. So
a disjunction of relations does not always preserve transitivity.
The point to emphasize here is this: in the realm of experi-

3Lange (in press) discusses the combination question in the framework
of the conception of transitivity as a principle that helps proposing an
argument against Hume’s account of natural law. This issue is not under
the spotlight of the present paper.

mentation one may test several factors to find out how they
explain behavior. One may expect to obtain transitivity if the
responses (outputs) on the Y-axis are increasing in parallel as
a function of the increase in the stimuli (inputs) on the X-axis.
Usually, however, one obtains interactions that do not enable
transitivity. (For additional complex situations see the above
discussion regarding multidimensionality.)

3.2 Transitivity and the ”bite of the dog”
example

(a) Jim planned to detonate a bomb by pressing a button with
his right hand: (b) a dog bit Jim’s right hand; (c) Jim pressed
the button with his left hand and the bomb went off. Ac-
cording to Halpern’s analysis the bomb would have exploded
had Jim used his right hand (in the counter-factual case where
the dog did not bite that hand) or his left. But pressing with
his right hand is not possible when the dog has bitten this
hand. Therefore, Halpern holds that causal transitivity has
not been preserved. (This example is based on McDermott’s
1995 article which critiques Lewis’s approach to causality and
uses it against causal transitivity.) By contrast, according to
the present approach transitivity is maintained because pres-
sure by the right hand represents one possible way of realizing
Jim’s intention, that is, one possible cause of the explosion.
This intention could have been realized by pressing with the
left hand also. Actually, Jim’s intention of pressing the but-
ton could be realized in other ways (e.g. a friend who obeys
Jim’s will). Given that the explanation relation may be re-
alized in various ways, for this example one may suggest an
interpretation where transitivity is maintained.

3.3 Reduction

The reduction of theory B (TB) to theory A (TA), which is
more basic and extensive than TB, has generated several ap-
proaches, diverse models, around which many debates ensued
(see Jones, 2000; Ney, 2016; van Riel and Gulick, 2016). In
the present framework we shall discuss briefly the following
approaches, which seem most relevant to the problem of ex-
planation and transitivity.

The D-N model

By this model particular events as well as empirical generaliza-
tions can be deduced (explained). Taking Galileo’s law as an
empirical generalization, it is derivable by appeal to Newton’s
theory. In the present case it can be suggested that the reduc-
tion of TB by TA can be understood that TB is explained by
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TA. In our view an important problem in this approach is that
the present model does not deal properly with the relation be-
tween the terms of TB and the terms of TA (e.g., according to
Newtonian theory gravitation varies as a function of distance
squared between two masses; according to Galileo’s law g is
constant). The following approach attempts to handle this
issue.

Nagel’s model

By Nagel’s (1961) approach to theoretical reduction, TB is
reduced by TA if it is possible to deduce, derive TB from TA
by the use of bridging laws that connect the terms of TB with
the terms of TA. This approach, which in structure is like
Hempel’s explanatory model (the D-N model), sparked great
criticism on the one hand, but also abundant defense on the
other (see Jones, 2000; Ney, 2016; van Riel and Gulick, 2016).
Nevertheless, we decided to concentrate on Nagel’s model,
because it is considered a cornerstone in the field of reduction.
Here, the interesting question we consider is this: what is the
relation between reduction and explanatory-transitivity? One
may argue that if the reduction of TB by the more basic theory
TA is possible then in this case explanatory-transitivity will also
be obtained. That is, if TB explains O, and if TB is subject
to reduction by TA, then TA will also explain O. Against this
argument the following reservation may be raised.

As mentioned, explanatory-transitivity rests on the same rela-
tion R obtaining for the three expressions, and on it being pos-
sible to realize R in various ways, that is, on multiple realiza-
tions. But multiple realization is deemed one of the strongest
arguments against Nagel’s reduction model: it is not possi-
ble to propose bridging laws between the terms of TA and
the terms of TB because these theoretical terms are subject
to different realizations. For example, the term referring to
a feeling of heat is likely to have different neurophysiological
realizations in humans and in diverse animals. That is, while
by our approach multiple realizations are the basis of preser-
vation of transitivity, this multiplicity erects a barrier to the
reduction process.

Given this, it is reasonable to suggest that there is no identity
between explanation and reduction. On various grounds other
researchers have reached a similar conclusion, namely under-
standing reduction as a deductive process does not accord with
the development of science (e.g. Jones, 2000; Ney, 2016; van
Riel and Gulick, 2016).

To conclude, the present article stresses the following two cen-
tral points. First, it is possible to propose a necessary condi-
tion for explanatory-transitivity. If the scheme of explanation is
not preserved in the three expressions, then transitivity will not
obtain. This argument is supported by an analysis of several

1 2 3
A 10 9 8
B 5 7 6
C 3 7 7

Figure 1: Preservation of transitivity of greater-than

examples. Secondly, the discussion of the connections among
explanation, reduction and transitivity showed the following:
while multiplicity of realizations is an important component
for the necessary condition of explanatory-transitivity, many
consider it a barrier to reduction according to the model of
Nagel (1961).

Appendix: Multi-dimensional Relations
Sometimes Preserve and Sometimes
Do Not Preserve Transitivity

Figure 1 offers a transitivity example for the relation greater
than, where the row presents three dimensions and the column
three events (objects, properties, persons, etc.).

We define the relation greater than as follows: A − B > 0 when
the sum of the differences over the dimensions is positive. In
this example: A − B = (10 − 5) + (9 − 7) + (8 − 6) = 5
+ 2 + 2 = 9, thus A > B; B − C = (5 − 3) + (7 − 7) + (6
− 7) = 2 + 0 + (−1) = 1, thus B > C; The example shows
transitivity, since A − C = (10 − 3) + (9 − 7) + (8 − 7) =
7 + 2 + 1 = 10 > 0, thus A > C.

In general, the relation greater than applied to a phenomenon
constituted of three events by n=3 dimensions shows transi-
tivity.

1 2 3
A a1 a2 a3
B b1 b2 b3
C c1 c2 c3

A − B = (a1 − b1) + (a2 − b2) + (a3 − b3) > 0, then A
>B ; and B − C = (b1 − c1) + (b2 − c2) + (b3 − c3) >
0 then A > C.

Proof: Since A > B [(a1 + a2 + a3) > (b1 + b2 + b3)], and
since B > C [(b1 + b2 + b3) > (c1 + c2 + c3)], where ai,
bi and ci are real numbers, it follows that A > C [(a1 + a2 +
a3) > (c1 + c2 + c3)] and transitivity is preserved. Clearly,
the result is true for A, B, C and with n dimension, since the
proof will be the same.
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1 2 3
A 1.0 0.1 0.1
B 0.5 1.0 0.3
C 0.1 0.3 0.5

Figure 2: Non-transitivity of multiplication ≥ 0.5

Transitivity will be preserved if we add weights (p, q, r) to the
above three dimensions, where 0 < p < 1, 0 < q < 1, and 0
< r < 1 and p + q + r = 1:

1p 2q 3r
A a1 a2 a3
B b1 b2 b3
C c1 c2 c3

A > B if p(a1 − b1) + q(a2 − b2) + r(a3 − b3) > 0 and
B > C if p(b1 − c1) + q(b2 − c2) + r(b3 − c3) > 0; thus
using the inner product we have W · A > W · B and W
· B > W · C, therefore W · A > W · C. Here A = (a1,
a2, a3), B = (b1, b2, b3), C = (c1, c2, c3) and W = (p, q,
r) and transitivity is preserved. Clearly, the result is true for
A, B, C and W with n dimension since the proof will be the
same.

In the next example, we will look at a case where transitivity
is not preserved.

Figure 2 presents an example of the relation multiplication ≥
0.5 in which transitivity does not hold.

We define the relation multiplication ≥ 0.5 when the sum of
the multiplications over the dimensions ≥ 0.5. In table 2 we
have A · B=(1.0)(0.5) + (0.1)(1.0) + (0.10)(0.3) = 0.5 +
0.1 + 0.03 = 0.63 ≥ 0.5; B · C = (0.5)(0.1) + (1.0)(0.3)
+ (0.3)(0.5) = 0.05 + 0.3 + 0.15 = 0.5. However, A · C =
(1.0)(0.1) + (0.1)(0.3) + (0.1)(0.5) = 0.1 + 0.03 + 0.05 =
0.18 < 0.5. That is, transitivity does not hold.
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Abstract
Continually expanding periodically translated kernels
on the two dimensional grid can yield interesting, beau-
tiful and even familiar patterns. For example, expand-
ing circular pillbox shaped kernels on a hexagonal grid,
adding when there is overlap, yields patterns includ-
ing maximally packed circles and a triquetra-type three
petal structure used to represent the trinity in Chris-
tianity. Continued expansion yields the flower-of-life
used extensively in art and architecture. Additional
expansion yields an even more interesting emerging ef-
florescence of periodic functions. Example images are
given for the case of circular pillbox and circular cone
shaped kernels. Using Fourier analysis, fundamental
properties of these patterns are analyzed. As a func-
tion of expansion, some effloresced functions asymp-
totically approach fixed points or limit cycles. Most
interesting is the case where the efflorescence never
repeats. Video links are provided for viewing efflores-
cence in real time.
Keywords: tiling, emergence, periodicity, flower-of-life,
efflorescence, triquetra

1 Introduction

Expanding kernels on a periodic array can generate beautiful
and sometimes familiar patterns.

To visualize how an expanding circular kernel might physically
occur, imagine point sources of light that emit perfectly cir-
cular cones that expand with distance. This is illustrated in
Figure 1. Assume a large number of these light sources are
spaced in a hexagonal grid. A viewing screen placed parallel
and close to the array of lights will display a set of circles as in
Figure 2(a) because the cones have not yet overlapped. There
will be a point where the cones first touch. This is illustrated
in Figure 1 where a single hexagon of seven point elements
sources are denoted by the small circles on top. The touching
cones here correspond to the closely spaced nonoverlapping

circles in Figure 2(b) and the maximally packed pennies in
Figure 4. Beyond this point, the circles intersect. This visual-
ization illustrates the dynamics in Figure 2 where the number
of periodically spaced light sources on the plane is infinite.
The further we go from the lights, the more circles overlap
and the more interesting and beautiful patterns emerge.1

Figure 1: Illustration of the expanding kernels shown in
Figure 2. Light sources give forth cone-shaped beams
which overlap more and more as the distance is in-
creased from the light source plane. Shown here is the
point where the cones first touch. This corresponds
to the circles in Figure 2(b).

From a first order approximation, expanding circles emerge
from single x-rays in cone-beam tomography (Feldkamp,
Davis, and Kress, 1984; Scarfe, 2018) generate the expand-
ing circles in Figure 1. Expanding patterns other than cones
naturally occur in electromagnetics. Periodically spaced an-
tenna (Filipovic, Volakis, and Andersen, 1999; Ishimaru et al.,
1985; Markov and Chaplin, 1983) and sensor arrays (Gous-
setis, Feresidis, and Vardaxoglou, 2006; Sung et al., 2008)
generating identical expanding signals can display diverse and
complex patterns depending on source excitation and range of
observation.

The tile in this expanding circle example is a equalsided
hexagons as used by bees in honey combs. The hexagonal
tile for maximally packed circles is shown in Figure 5 where
identical hexagonal tiles each containing an inscribed circle.
Rectangles and parallelograms are other examples of possible

1As the cone expands, the light will grow dimmer. The analogy breaks
down here. We assume the light in the plane always correspond to a
brightness value of one no matter how far we are from the point sources.

https://dx.doi.org/10.33014/issn.2640-5652.3.1.marks.1
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Figure 2: Expanding circular pillboxes on a hexagonal
grid. Heat map (Wikipedia, 2020a) colours denote
regions equal to a constant and are used only for dif-
ferentiating among the different regions of the figure.
Figure (b) represents maximally packed circles. Figure
(c) is a three petal pattern. Slightly more expansion
will result in the triquetra in Figure 7. Figure (e) is
the flower-of-life. (Continued in Figure 3.)
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Figure 3: Heat map plots of expanding circular pillbox
efflorescent function beyond that in Figure 2. As the
circles expand, the patterns have more texture because
higher and higher spatial frequencies are introduced.
(Continued from Figure 2.)
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Figure 4: Maximally packed pennies (Wikipedia,
2020b). In this example, the kernel is the grey level
map of a single penny and the periodicity is hexagonal.

tile shapes. Circles and octagons are not tiles since any tiling
attempts will result in gaps of coverage.2

All the patterns in Figure 2 can be achieved with identically
shaped hexagon tiles containing an appropriate pattern.

More generally, identical versions of a two dimensional (2D)
function3 are translated in accordance to a 2D periodic geom-
etry specified by the two periodicity vectors. The translations
are added to form a periodic function. We call the original 2D
function the kernel. With the tiling geometry kept constant,
each of these kernels is magnified or, equivalently, expanded.
The expanding kernels will soon overlap onto other tiles. When
kernels overlap, the expanded kernels are added. When view-
ing the emergent patterns as expansion continues, fascinating
patterns can begin to flower. Since efflorescence in French
means “to flower out,” we refer to the emergence as efflores-
cent functions. No matter how much the kernels expand, the
efflorescent function is a periodic function with a period fixed
by the tile.

An alternate explanation of expanding kernels is illustrated in
Figure 1 where the circular kernel is illustrated as an expanding
circular pill box.

Independent of the degree of kernel expansion, the resulting

2Triangles are not considered tiles in our treatment. Two identical
triangles can be be configured into a parallelogram tile, but we we only
consider tiling that uses translation. No rotation or flipping is allowed.
Nevertheless, rotation and flipping of so-called subtiles can be used in
definition multidimensional periodicity (Marks II, 2019). This is not con-
sidered in our treatment.

3i.e. a scalar function of two variables.

Figure 5: Maximally packed circles and the corre-
sponding hexagonal tile.

Figure 6: An expanding circular pillbox as a 2D func-
tion. The circular pillbox shape expands to the larger
pillbox is a smooth continuous manner.
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Figure 7: An illustration of a specific instance of ex-
panded overlapping when the kernel is an annulus (cir-
cular ring) replicated hexagonally. Left: The trique-
tra (Wikipedia, 2020c). Right: Periodic replication
of the triquetra reveals emergence from overlapping
rings. (Note: The summation of the overlaps is not
shown. Only the ring overlap is shown.)

2D function formed by the sum of possibly overlapping kernels
is periodic with the same hexagonal replication geometry. The
single hexagonal tile shown in Figure 5can be copied and, if
you will, used to tile a kitchen floor without gaps. In this sense,
a periodic tiling geometry is conserved during the expansion.4

Expanding circles generate familiar flowering instances includ-
ing:

• packed circles in Figure 2(b) can be visualized by placing
pennies on a table surface as close as possible. This is
illustrated in Figure 4,

• as seen in Figure 7, a triquetra-type (Wikipedia, 2020c)
three petal pattern used to represent the trinity in early
Christianity. This pattern is seen in Figure 2(c), and

• the flower-of-life (Melchizedek, 1999) in Figure 2(e)5

Properties of efflorescent functions can be derived using two
dimensional Fourier series analysis. Some efflorescent func-
tions approach fixed points or limit cycles as a function of
expansion. Most interesting are efflorescent functions that
never repeat. Describing mathematics is limited to Section 4
and the Appendix. The content of the paper is thereby acces-
sible without reference to the detail sought by mathematicians
for deeper insight.

4For a given replication, there is more than one choice for a tile.
Hexagonal tiles can be used for any of the patterns shown in Figure 2
but a parallelogram tile can be used to represent the same periodicity
structure. Although tiles can differ geometrically, all viable tiles will have
the same two-dimensional area (Marks II, 2009).

5The flower-of-life is easily constructed using only a compass. Draw
a circle. Then place the point of the compass at any point on the circle.
Draw another circle. Place the compass point at one of the two points
where the circles intersect and draw another circle with the same radius.
Continue placing the compass point at intersections of circles with the
original circle and the flower-of-life will result.

Figure 8: Left: The flower-of-life. Right: Periodic
replication of the flower-of-life reveals emergence from
overlapping circles.

1.1 The Flower-of-Life in Art History

The flower-of-life tiling has a rich history in art and archi-
tecture. The flower-of-life appears in the Osiris Temple in
ancient Egypt (Flowers, 2006) and as a floor decoration from
the palace of King Ashurbanipal. Ashurbanipal was king of
the Neo-Assyrian Empire from 668 BC to c. 627 BC (Man-
ninen, 2011). The flower-of-life even appears in crop circles
(National Geographic, 2010) .

Here are some other examples.

1. As shown in Figure 10, the flower-of-life appeared in the
art of Leonardo da Vinci (Mic, 2012).

2. Figure 10 shows the flower-of-life from Turkey.

3. In Figure 11, we see a cup fragment from Idalion, Cyprus
that dates to circa 700 to 600 BC. The art shows “mytho-
logical scenes, a sphinx frieze and the representation of a
king vanquishing his enemies. The center contains a ver-
sion of the ‘Flower of life’ geometrical pattern” (Nguyen,
2007).

4. A ball “held by the male Imperial Guardian Lion at
the Gate of Supreme Harmony, Forbidden City, Beijing.
China” is covered by replications of the flower-of-life.
This is shown in Figure 12.

1.2 Further Circle Expansion

What happens when the circles are expanded further than
shown in Figure 2? Results is shown in Figure 3 starting with
the flower-of-life in the upper left. Assume the original radius
of the circles in the flower-of-life is 𝑅 = 1. Shown are hexago-
nal tilings corresponding to the circle radiuses of 5, 10, 25, 50
and 100.
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Figure 9: Flower of life from sketches from Leonardo
da Vinci. (This is a faithful photographic reproduction
of a two-dimensional, public domain work of art (da
Vinci, 1478).)
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Figure 10: Flower of life “ephesos square” from Eph-
esus, Turkey. (Image credit: Wikipedia Creative
Commons Attribution-Share Alike 4.0 International
(Miryam, 2015).)
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Figure 11: An ancient cup inscibed with the flower-of-
life. (Image credit: This work is in the public domain
in its country of origin and other countries and areas
where the copyright term is the author’s life plus 100
years or fewer (Nguyen, 2007).)
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Figure 12: The flower-of-life is on a ball at the Gate
of Supreme Harmony, Forbidden City, Beijing. China.
(Photo credit: Wikimedia Commons (Adamantios,
2013).)
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Videos of beautiful emergent behavior from real-time expand-
ing circular kernels are available online (Nybal, 2014d; Nybal,
2014c).

2 Other Expanding Kernels

Other kernels can be expanded and arrays other than hexag-
onal can be used. An expanding circular cone kernel6 is illus-
trated in Figure 13. (Compare to the expanding pillbox circle
in Figure 6.) A heat map plot of a hexagonal array of small
nonoverlapping circular cones is shown in Figure 14(a). The
overlapping expanding kernels are then shown for circle radii of
200, 500, 1000, 1500, and 1750. As is the case with the circles,
the patterns generally become more complex as the expansion
becomes larger and more and more cones intersect.

Figure 13: A single expanding circular cone shaped
kernel as a two dimensional function.

3 Properties of Expanding Kernels of
Varying Periodicity

3.1 Detrending and Heat Maps

As more and more kernels overlap, the number of kernels inter-
secting a tile generally gets larger and larger.7 If 1000 circular
pillboxes overlap and the height of a pillbox is one, the value
of the 2D function is 1000 in the area of overlap. Detrend-
ing clears this tower by removing the buildup and looking only

6Disambiguation: The term cone-kernel is also used in reference to
2D time-frequency representations (Oh and Marks II, 1992; Oh, Marks
II, and Atlas, 1994; Zhao, Atlas, and Marks II, 1990) and is not related
to the usage of the term here.

7An exception would be a gaussian shaped kernel where all tiles are
effected by all other tiles at all times. The contribution of shifted kernels
far removed will become more and more significant as the kernel expands.

at fluctuations on top of the tower after removing the tower
height.

In Fourier series, the zeroth order Fourier series coefficient
denotes the average value of the periodic function. By setting
the zeroth order coefficient to zero, the tower is removed and
only the fluctuations remain. We define setting the zeroth
order Fourier series coefficient to zero as detrending (Hill and
Gauch, 1980; Kantelhardt et al., 2002). The heat map plots
in Figures 2,3,14 and 15 do this automatically by plotting only
within the dynamic range of the fluctuations.

3.2 Summary of Fourier Analysis Results

Depending on the kernel and periodicity, display of detrended
patterns show different behaviour. In Section 4, we examine
whether continuous expansion of kernels asymptotically ap-
proaches either:

1. zero everywhere,

2. a fixed periodic function of the ®𝑡 plane that does not
change with respect to additional expansion, or

3. oscillation in a limit cycle as function of the expansion
variable. In other words, as expansion continues, the ef-
florescent function displays a repeated pattern.

As we go down the list, each entry is seen to be a subset of
the other. A value of (1) zero is a degenerate case of (2) a
fixed periodic function that does not change with expansion.
Likewise (2), a fixed periodic function, is a special static case
of (3): oscillation on a limit cycle as a function of expansion.

The most interesting cases, not on the list, are those where
the efflorescent function never repeats and results in a never
repeating series of patterns. The expanding circular pillbox
and circular cone are examples.

4 Analysis

The mathematical analysis of efflorescent functions is solely
relegated to this section and the Appendix.

Using standard notation (Dudgeon and Mersereau, 1984;
Marks II, 1991; Marks II, 2009), the two dimensional Fourier
transform of a two dimensional function 𝑥(®𝑡 ) = 𝑥(𝑡1, 𝑡2) is8

𝑋 ( ®𝑢) =
∫
®𝑡
𝑥(®𝑡 )𝑒−𝑖2𝜋 ®𝑢𝑇 ®𝑡𝑑®𝑡 (1)

8𝑖 =
√
−1.
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Figure 14: Heat map plots of the expanding circular
cone efflorescent function. The nonoverlapping small
cones are seen in (a). (Continued in Figure 15.)
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Figure 15: Heat map plots of the expanding circu-
lar cone efflorescent function. (Continued from Fig-
ure 14.)
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Figure 16: Left: A 2D plot of nonoverlapping repli-
cated circular cones. A perspective projection of the
heat map is shown on top. Right: A similar plot made
after the expanding circular cones intersect.
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where 𝑇 denotes vector transposition, ®𝑡 = [𝑡1, 𝑡2]𝑇 , ®𝑢 =
[𝑢1, 𝑢2]𝑇 , 𝑑®𝑡 = 𝑑𝑡1𝑑𝑡2 and∫

®𝑡
=

∫
𝑡1

∫
𝑡2

.

The signal integral property (Marks II, 2009) follows immedi-
ately from (1) by setting ®𝑢 = ®0.

𝑋 (®0) =
∫
®𝑡
𝑥(®𝑡 )𝑑®𝑡. (2)

The inverse Fourier transform is

𝑥(®𝑡) =
∫
®𝑢
𝑋 ( ®𝑢)𝑒𝑖2𝜋 ®𝑢𝑇 ®𝑡𝑑 ®𝑢.

To supply foundation and to establish notation, a concise re-
view of multidimensional Fourier series is appropriate (Dud-
geon and Mersereau, 1984; Marks II, 1991; Marks II, 2009).
The Fourier series has the following properties (Marks II,
2009):

• Convergence is in the mean if a period of the periodic
function satisfies Dirichlet conditions criteria.

• Convergence is uniform if the periodically replicated ker-
nel is continuous.

• When there are discontinuities in the kernel, the Fourier
series converges to the arithmetic midpoint of the discon-
tinuity.

The examples in this paper are for one and two dimensional
periodic functions although the theory can be developed for
an arbitrary dimension.

Two dimensional periodicity is dictated by a 2× 2 nonsingular
periodicity matrix Q given as

Q = [ ®𝑞1 ®𝑞2]

where ®𝑞1 and ®𝑞2 are periodicity vectors. In one dimension,
the period of a periodic function is defined by a single scalar
which can be viewed as a 1×1 matrix. The scalar entry in the
matrix is the one dimensional period, 𝑇 . In two dimensions,
a pair of 2D vectors is required to define periodicity. In 𝑀
dimensions, 𝑀 periodicity vectors are required. Each vector is
of length 𝑀 (Dudgeon and Mersereau, 1984; Marks II, 1991;
Marks II, 2009),

A 2D example is shown in Figure 17 where maximally packed
circles of radius 𝑅 generate periodicity vectors

®𝑞1 =


𝑅
2

𝑅
2
√

3

 ; ®𝑞2 =


−𝑅

2

𝑅
2
√

3

 .

where 𝑅 is the circle’s radius. The corresponding periodicity
matrix follows as

Q =
𝑅

2

[
1 −1√
3

√
3

]
. (3)

Figure 17: Hexagonal periodicity vectors illustrated for
maximally packed circles.

A tile isolates a single period of the periodic function and,
when replicated according to the periodicity matrix, fills the
space without gaps. For hexagonal periodicity, a correspond-
ing hexagonal tile is shown in Figure 5. For a given periodicity
structure, neither Q or the tile shape is unique. This is illus-
trated Figure 18 where hexagon and a parallelogram tiles both
have the same periodicity vectors.

A tile centered at the origin will be replicated on the (𝑡1, 𝑡2)
plane at the vectors ®𝑞1 and ®𝑞2. The tile will also be replicated
at any integer multiple of the periodicity vectors, for example
at ®𝑞1 + ®𝑞2 and 4®𝑞1 − 3®𝑞2. Any tile replication on the (𝑡1, 𝑡2)
plane can be represented by the combination 𝑚1 ®𝑞1 + 𝑚2 ®𝑞2
where 𝑚1 and 𝑚2 are integers. A more concise expression is

𝑚1 ®𝑞1 + 𝑚2 ®𝑞2 = Q ®𝑚

where ®𝑚 is a two dimensional vector of integers.

®𝑚 =

[
𝑚1
𝑚2

]
.

The hexagonally shaped tile in Figure 5 has an area of

| det Q| =
√

3 𝑅2

2
. (4)
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Figure 18: For a given set of periodicity vectors, the
choice of tiles is not unique. The periodicity vectors
illustrated at the bottom of Figure 17 can also describe
the parallelogram tile shown here. (Only two columns
of the parallelogram tile are shown here.) In both
cases, the area of the tile, | det𝑄 |, is the same (Marks
II, 2009).

For a given periodicity structure defined by the periodicity ma-
trix Q, a periodic function with a kernel of 𝑔

(®𝑡 ) can be written
in a space with coordinates ®𝑡 as (Marks II, 2009)

𝑧
(®𝑡 ) = ∑

®𝑚
𝑔

(®𝑡 − Q ®𝑚
)

(5)

where the sum is over the set of all integer pairs.∑
®𝑚

=
∞∑

𝑚1=−∞

∞∑
𝑚2=−∞

.

Note that

• the kernel is not constrained to be zero outside of a tile
and can even extend over the entire ®𝑡 plane, and

• many kernels can generate the same periodic function,
𝑧
(®𝑡 ).

The corresponding multidimensional Fourier series of the pe-
riodic function in (5) is the Fourier series (Marks II, 2009;
Papoulis, 1978)9

𝑧
(®𝑡 ) = | det P|

∑
®𝑚
𝐺 (P ®𝑚) exp

(
𝑖2𝜋®𝑡𝑇 P ®𝑚

)
(6)

9To see the periodicity, consider shift of (6) from 𝑧
(®𝑡 ) to 𝑧

(
®𝑡 − Q®𝑘

)
where ®𝑘 is an arbitrary vector of integers. If 𝑧

(
®𝑡 − Q®𝑘

)
= 𝑧

(®𝑡 ) for all such
shifts. 𝑧

(®𝑡 ) is periodic with periodicity matrix Q. From (6),

𝑧
(
®𝑡 − Q®𝑘

)
= | det P |

∑
®𝑚
𝐺 (P ®𝑚) exp

(
𝑖2𝜋

(
®𝑡 − Q®𝑘

)𝑇
P ®𝑚

)
.

where P and Q are related by an inverse transpose

P = Q−𝑇 , (7)

The equivalence of (5) and (6) stems from the Fourier dual
of the Poisson sum formula (Marks II, 2009; Papoulis, 1978;
Papoulis and Pillai, 2002).

∑
®𝑛
𝑋 ( ®𝑢 − P®𝑛) = | det Q|

∑
®𝑛
𝑥 (Q®𝑛) 𝑒𝑖2𝜋 ®𝑢𝑇 Q®𝑛

4.1 Expanding Kernels

We are able to now describe the expanding kernel periodic
function for arbitrary periodicity matrix Q and kernel 𝑔

(®𝑡).
Definition 4.1. The expanding kernel periodic function,
𝑥𝜎

(®𝑡 ), generated by a kernel 𝑔
(®𝑡 ) is

𝑥𝜎
(®𝑡 ) = ∑

®𝑚
𝑔

( ®𝑡 − Q ®𝑚
𝜎

)
(8)

As 𝜎 increases, the kernel expand.

In both the expanding circular pillbox and expanding circular
cone examples, 𝜎𝑅 is the radius of the circle.

From (6), the corresponding Fourier series of the expanding
kernel is

𝑥𝜎
(®𝑡 ) = | det P|𝜎2

∑
®𝑚
𝐺 (𝜎P ®𝑚) exp

(
𝑖2𝜋®𝑡𝑇 P ®𝑚

)
. (9)

The overlapping expanding kernels can be detrended by eval-
uating the mean value of the periodic function. The mean
value in a Fourier series expansion is the zeroth order Fourier
series coefficient. This can be evaluating by integrating over
a single tile followed by division by the area of the tile.

The theorem to follow uses the arbitrariness of the choice of
tiles when integrating. In one dimension, the period of a pe-
riodic function, say 𝑇 , is arbitrary. We can choose the period
to be on the interval 0 ≤ 𝑡 < 𝑇 or −𝑇/2 ≤ 𝑡 < 𝑇/2. There is a

The exponential term here becomes

exp
(
𝑗2𝜋

(
®𝑡 − Q®𝑘

)𝑇
P ®𝑚

)
= exp

(
𝑖2𝜋®𝑡𝑇 P ®𝑚

)
exp

(
−𝑖2𝜋

(
Q®𝑘

)𝑇
P ®𝑚

)
.

Using (7),

exp
(
−𝑖2𝜋

(
®𝑘𝑇 Q𝑇 P ®𝑚

))
= exp

(
−𝑖2𝜋

(
®𝑘𝑇 ®𝑚

))
= 1

so that 𝑧
(
®𝑡 − Q®𝑘

)
= 𝑧

(®𝑡 ).
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similar arbitrariness in the choice of a tile. To illustrate, con-
sider a 2D function with hexagonal replication across a plane.
Choosing a tile in this function is like choosing a cookie cutter.
As illustrated in Figure 18, a hexagonal cookie cutter can be
used. But a hexagon is not the only possible tile. As shown in
the figure, a cookie cutter shaped like a parallelogram can also
be used as can any cookie cutter that satisfies the periodicity
constraints.

Notationally, integrating over area C in the following theorem
means integration over any single tile. For additional details,
see Marks (Marks II, 2009).

Theorem 4.2. The mean value of the expanding kernel func-
tion, 𝑥𝜎

(®𝑡 ), is

〈𝑥𝜎〉 := 1
| det Q|

∫
®𝑡 ∈C

𝑥𝜎
(®𝑡 ) 𝑑®𝑡

= 𝜎2 | det P|
∫
®𝑡
𝑔

(®𝑡 ) 𝑑®𝑡 (10)

= 𝜎2 | det P|𝐺 (®0) (11)

The region C is any region in the ®𝑡 space covering a tile.

As 𝜎 increases, the detrended sum of the expanding kernels in
the ®𝑡 plane approaches a without any interesting structure.

Proof. The expression in (10) for the mean of 𝑥𝜎
(®𝑡 ) follows

from the ®𝑚 = ®0 term in the Fourier series in (9). Equation
(11) follows from the integral property (2). □

We can now define the detrended periodic function.

Definition 4.3. The periodic efflorescent function, 𝜁𝜎
(®𝑡 ), is

the detrended expanding kernel function, i.e. 𝑥𝜎
(®𝑡 ) minus its

mean.
𝜁𝜎

(®𝑡 ) = 𝑥𝜎 (®𝑡 ) − 〈𝑥𝜎〉 .

The corresponding Fourier series of 𝜁𝜎
(®𝑡 ) is simply the Fourier

series of 𝑥𝜎
(®𝑡 ) in (9) with the zeroth order Fourier series

coefficient ®𝑚 = ®0 term removed.10

𝜁𝜎
(®𝑡 ) = | det P|𝜎2

∑
®𝑚≠®0

𝐺 (𝜎P ®𝑚) exp
(
𝑖2𝜋®𝑡𝑇 P ®𝑚

)
. (12)

From this expression, we see the Fourier series coefficients for
the efflorescent function are

𝑐𝜎 [ ®𝑚] =
{

| det P|𝜎2𝐺 (𝜎P ®𝑚) ; ®𝑚 ≠ ®0
0 ; ®𝑚 ≠ ®0 (13)

10By ®0, we mean a vector whose only elements are zero.

4.2 Convergence

The periodic efflorescent function can most interestingly gen-
erate a never repeating pattern of fascinating shapes. This
does not happen when, as a function of expansion, the efflo-
rescent function reaches a limit cycle or fixed point. We now
examine when this happens.

Asymptotic Convergence of the Efflorescent Function
to Zero

We first establish when the efflorescent function expanding
kernel approaches zero.

First define the Kronecker delta as

𝛿[ ®𝑚] :=
{

1 ; ®𝑚 = ®0
0 ; ®𝑚 ≠ ®0

Theorem 4.4. Sufficient condition for converging to the
mean. Let 𝑀 = 2.11 If

𝜎𝑀𝐺 (𝜎P ®𝑚) −→
𝜎→∞

𝜎𝑀𝐺 (®0)𝛿[ ®𝑚] (14)

then 𝑥𝜎
(®𝑡 ) converges to its mean.

𝑥𝜎
(®𝑡 ) −→

𝜎→∞
〈𝑥𝜎〉 .

As a consequence
𝜁𝜎

(®𝑡 ) −→
𝜎→∞

0.

In other words, as the kernels continue to expand, the efflores-
cent function approaches the very uninteresting result of zero
over the entire (𝑡1, 𝑡2) plane.

Proof. As 𝜎 → ∞, all terms 𝜎𝑀𝐺 (𝜎P ®𝑚) in (9) tend to zero
when (14) is true except when ®𝑚 = ®0. Then (9) becomes

𝑥𝜎
(®𝑡 ) −→

𝜎→∞
𝜎𝑀 | det P|𝐺 (®0) = 〈𝑥𝜎〉

□

A sufficient smoothness criterion Convergence of an ex-
panding efflorescent function to zero is assured when the kernel
adheres to smoothness and integrability properties.

11The theorems given are applicable in any dimension 𝑀 . We have
concentrated on 2D so will set 𝑀 = 2 to avoid confusion. This also
applies to Theorem 4.5.
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Theorem 4.5. Convergence to the mean: The following
theorem applies to 𝑀 dimensions. For the examples herein,
𝑀 = 2. The 𝑀 dimensional function, 𝑥𝜎

(®𝑡 ), converges to its
mean if its kernel, 𝑔

(®𝑡 ), obeys the following property.12∫
®𝑡

�����
(
𝑀∏
𝑘=1

𝜕𝑖𝑘

𝜕𝑡𝑖𝑘𝑘

)
𝑔

(®𝑡 ) ����� 𝑑®𝑡 = 𝐴 < ∞ (15)

where the nonnegative integers {𝑖𝑘 |1 ≤ 𝑘 ≤ 𝑀} obey

𝑀∑
𝑘=1

𝑖𝑘 > 𝑀 (16)

The choice of ®𝑖 = [𝑖1 𝑖2 𝑖3 · · · 𝑖𝑀 ]𝑇 is arbitrary so long as
(15) and (16) are satisfied.

The proof is given in Appendix 6.1.

Corollary 4.6. For 𝑀 = 1, Theorem 4.5 says the efflorescent
function will converge to zero if∫

𝑡

���� 𝑑2

𝑑𝑡2
𝑔(𝑡)

���� 𝑑𝑡 = 𝐴 < ∞

Example 4.7. Consider the two dimensional kernel

𝑔
(®𝑡 ) = Π(𝑡1)𝑒−𝑡

2
2 ,

where the rectangle function is

Π(𝑡) :=
{

1 ; |𝑡 | ≤ 1
2

0 ; |𝑡 | > 1
2 .

(17)

Then (WolframAlpha.com, 2020)∫
®𝑡

����� 𝜕3

𝜕𝑡32
𝑔

(®𝑡 ) ����� 𝑑®𝑡 =
∫ ∞

𝑡1=−∞
Π(𝑡1)𝑑𝑡1

∫ ∞

𝑡2=−∞

����� 𝑑3

𝑑𝑡32
𝑒−𝑡

2
2

����� 𝑑𝑡2
=

= 4
(
1 + 4𝑒−3/2

)
= 𝐴 < ∞

and 𝑖1 + 𝑖2 = 0 + 3 > 𝑀 = 2. The criteria in Theorem 4.5 are
met and asymptotic convergence of the efflorescent function
to zero is assured.

Asymptotic Convergence To a Fixed Function

As the following example shows, the efflorescent function can
converge to a fixed function of ®𝑡 as scaling increases.

Example 4.8. Consider the one dimensional kernel

𝑔(𝑡) = 𝑒−𝑡𝜇(𝑡) (18)

Figure 19: Using the exponential decay kernel in (18)
results in the 𝜁𝜎 (𝑡)’s shown. As 𝜎 → ∞, the function
approaches the sawtooth shown by the thick red line
given by (19). (For this plot, 𝑇 = 275.)

where 𝜇(𝑡) is the Heaviside step function.13 Then 𝜁𝜎
(®𝑡 ) con-

verges in steady state to the solid red sawtooth waveform
shown in Figure 19.

lim
𝜎→∞

𝜁𝜎 (𝑡) =
1
2
− 𝑡

𝑇
; 0 < 𝑡 < 𝑇 (19)

A proof is given in Appendix 6.2.

Asymptotic Limit Cycle Periodicity in 𝜎

Efflorescent functions can be asymptotically periodic as a func-
tion of the expansion scaling variable 𝜎.

Theorem 4.9. Using the scalar periodicity matrix Q = 𝑇 , the
one dimensional kernel

𝑔(𝑡) = Π (𝑡)

results in a efflorescent function periodic in 𝜎 with a period of
𝑇𝜎 = 2𝑇 .

Proof. The one dimensional Fourier series expression for the
12For 𝑀 = 5 and ®𝑖 = [4 0 1]𝑇 , for example,(

𝑀∏
𝑘=1

𝜕𝑖𝑘

𝜕𝑡
𝑖𝑘
𝑘

)
𝑔

(®𝑡 ) = 𝜕5

𝜕𝑡4
1 𝜕𝑡3

𝑔
(®𝑡 ) .

13Equal to one for positive argument and zero otherwise.
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efflorescent function is

𝜁𝜎 (𝑡) =
𝜎

𝑇

∑
𝑚≠0

sinc
(𝜎𝑚
𝑇

)
𝑒𝑖2𝜋𝑚𝑡/𝑇 . (20)

where
sinc(𝑢) := sin(𝜋𝑢)

𝜋𝑢

is the one dimensional Fourier transform of Π(𝑡). For 𝑚 ≠ 0,
the 𝑚th Fourier series coefficient is

𝑐𝜎 [𝑚] = 𝜎𝐺
(𝜎𝑚
𝑇

)
=

𝜎

𝑇
sinc

(𝜎𝑚
𝑇

)
=

=
1
𝑇

sin
(
𝜋𝑚𝜎
𝑇

)
𝜋𝑚

Because of the sin term, 𝑐𝜎 [𝑚] is periodic with respect to 𝜎
with period 2𝑇 .

𝑐𝜎+2𝑇 [𝑚] = 𝑐𝜎 [𝑚]

Since all of the Fourier series coefficients in (20) are periodic
with period 2𝑇 , we conclude that

𝜁𝜎+2𝑇 (𝑡) = 𝜁𝜎 (𝑡).

and the efflorescent function oscillates as a function of 𝜎. □

The periodicity of 𝜁𝜎 (𝑡) is illustrated in Figure 20. The func-
tion is bounded by |𝜁𝜎 (𝑡) | ≤ 1 and is plotted over a single
period. The Figure begins with an all zero function marked
with the number 0. 𝜎 increases a bit. For the function marked
1, there is now a short positive pulse and the remainder of the
function is zero. Since 〈𝜁𝜎〉 = 0, all of the functions shown
have zero area. The pulse at the origin begins to spread as
𝜎 increases as is seen in the functions marked 2 through 7.
Then, at 8, the function returns to being identically zero. The
second phase is shown in Figure 20b. We begin with the zero
function marked 8 in Figure 20a which is also marked 8 in Fig-
ure 20b. 𝜎 increases a bit. The function marked 9 is a short
negative pulse. As 𝜎 increases, the negative pulse widens as
is seen in the functions marked 9 through 15. Function 16 is
identically zero and is the same as the function marked 0 in
Figure 20a. One period is complete and, as 𝜎 increases, the
next identical period begins.

4.3 Efflorescent Examples

The most interesting of efflorescent functions are those that
have no fixed asymptotic convergence properties. In two di-
mensions, such efflorescent functions continually bloom in a
nonrepeating manner. The reader is encouraged to view the
online videos (Nybal, 2014d; Nybal, 2014c; Nybal, 2014b; Ny-
bal, 2014a) (especially the expanding pillbox cone and circular

(a) The first part of the periodicity in 𝜎.

(b) The second part.

Figure 20: The periodicity in 𝜎 of 𝜁𝜎 (𝑡) for expanding
rectangular kernels in (20). The period in 𝜎 is 2𝑇 . The
function 𝜁𝜎 (𝑡) is also periodic in 𝑡 with period 𝑇 .
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cone videos) to fully appreciate this emergence. Screen shots
for expanding circle and cone shaped kernels are shown in Fig-
ures 3, 14 and 15. We now analyze properties of these two
kernel types.

We find useful the radial measures

𝑟 = ‖®𝑡‖ and 𝜌 = ‖ ®𝑢‖

where
‖®𝑡‖ =

√
𝑡21 + 𝑡22 . (21)

When the variable 𝑟 = 𝑟 (𝑡1, 𝑡2) is used in a two dimensional
expression, we assume it to be a two dimensional function of
𝑡1 and 𝑡2 as expressed here. Doing so avoids writing out the
square root expression in (21) at each usage. The variable
𝜌 = 𝜌(𝑢1, 𝑢2) can similarly be interpreted as a function of 𝑢1
and 𝑢2.

Expanding Pillbox Circle Example

The expanding circles example is a special case of (8) for 𝑀 =
2 dimensions where the kernel 𝑔(®𝑡) is one inside a circle of unit
radius and is otherwise zero.14

𝑔(®𝑡) = Π
( 𝑟
2

)
. (22)

Then 𝐺 (®0) is simply the area of a unit radius circle. From the
signal integral property in (2).

𝐺 (®0) =
∫
®𝑡
Π

( 𝑟
2

)
𝑑®𝑡 = 𝜋.

For expanding circles, the expanding kernel function is

𝑥𝜎
(®𝑡 ) = ∑

®𝑚
Π

(
‖®𝑡 − Q ®𝑚‖

2𝜎

)
so that 𝑔

(
®𝑡−Q ®𝑚
𝜎

)
in the ®𝑚th tile is a circle of radius 𝜎 centered

at Q ®𝑚.

The 2D Fourier transform of a unit radius circle in (22) is
(Marks II, 2009)

𝐺 ( ®𝑢) = 𝐽1 (2𝜋𝜌)
2𝜌

where 𝐽1 (·) is a first order Bessel function of the first kind.
Asymptotically (Abramowitz and Stegun, 1972)

𝐽1 (2𝜋𝜌)
2𝜌

−→
𝜌→∞

𝜌−3/2

2𝜋
cos

(
2𝜋𝜌 − 3

4
𝜋

)
(23)

14Specifically, from the definition of Π( ·) in (17), 𝑔 (®𝑡 ) = Π (𝑟/2) is one
for 𝑟

2 < 1
2 . This is equivalent to 𝑟 = ‖®𝑡 ‖ =

√
𝑡2
1 + 𝑡2

2 < 1 which defines a
circle of unit radius.

so that, for ®𝑚 ≠ ®0,

𝜎2𝐺 (𝜎P ®𝑚) = 𝜎2 𝐽1 (2𝜋𝜎‖P ®𝑚‖)
2𝜎‖P ®𝑚‖

−→
𝜎→∞

1
2𝜋

√
𝜎

‖P ®𝑚‖3 cos
(
2𝜋𝜎‖P ®𝑚‖ − 3

4
𝜋

)
The sufficient condition of Theorem 4.4 for convergence of the
efflorescent function to zero is therefore not met.

Pillbox Expansion on a Hexagonal Grid We have yet to
specify a periodicity for the expanding circles. Assume the
circle centers are spaced hexagonally in accordance with the
periodicity matrix in (3). From (4) we see that

| det P| = 1
| det Q| =

2
√

3𝑅2
. (24)

The expanding kernel function’s mean, from (10), is therefore

〈𝑥𝜎〉 = 𝜎2
(

2
√

3𝑅2

)
𝜋 =

2𝜋𝜎2
√

3𝑅2

Screen shots for the efflorescent function is shown in Figure 3
from the video available online (Nybal, 2014d).

Expanding Circular Cones

Set the two dimensional kernel to a circular cone of unit height.

𝑔
(®𝑡 ) = (1 − 𝑟)Π

( 𝑟
2

)
For circularly symmetric functions, the 2D Fourier transform
becomes the Hankel transform (Marks II, 2009) so that (Wol-
framAlpha.com, 2020) becomes

𝐺 ( ®𝑢) = 2𝜋
∫ 1

0
𝑟 (1 − 𝑟)𝐽0 (2𝜋𝑟𝜌)𝑑𝑟 (25)

=
𝐻0 (2𝜋𝜌)𝐽1 (2𝜋𝜌) − 𝐻1 (2𝜋𝜌)𝐽0 (2𝜋𝜌)

4𝜌2 .

where 𝐻𝑛 (·) are Struve functions (Weisstein, 2020) and 𝐽𝑛 (·)
are Bessel functions of the first kind. In Appendix 6.3, we
show that

𝜎2𝐺 (𝜎P ®𝑚) −→
𝜎→∞

− 2
𝜋2

√
𝜎3

‖P ®𝑚‖ cos
(
2𝜋𝜎‖P ®𝑚‖ − 𝜋

4

)
. (26)

As is the case with the expanding circles, the condition of
Theorem 4.4 for convergence to the mean for the expanding
cones is therefore not met. For any fixed P and ®𝑚 ≠ ®0, the
limit does not approach zero as 𝜎 increases without bound.
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Circular Cone Expansion on a Hexagonal Grid Assume
the cone centers are spaced hexagonally in accordance with
the periodicity matrix in (3). Thus we can use (24). Since
𝐽0 (0) = 1, the volume of a cone with a unit circle base and
unit height is, from (25),

𝐺 (®0) = 2𝜋
∫ 1

0
𝑟 (1 − 𝑟)𝑑𝑟 = 𝜋

3
.

The expanding kernel function’s mean, from (10), is then

〈𝑥𝜎〉 = 𝜎2
(

2
√

3𝑅2

)
𝜋

3
=

2
√

3𝜋𝜎2

𝑅2 .

As was the case for the circular pillbox, the limit does not
approach zero as 𝜎 increases without bound. Screen shots for
the cone’s efflorescent function are shown in Figures 14 and
15 from the video available online (Nybal, 2014c).

5 Conclusions

We have introduced the idea of periodic expanding kernel and
efflorescent functions and have shown they can display widely
variant behaviors dependent on the kernel and the underly-
ing periodicity. Examples are given of efflorescent functions
that converge to zero, converge to a nonconstant fixed point
and oscillate. When the efflorescent functions fluctuate with-
out repeating, patterns reminiscent of continual blooming can
emerge. Special occurrences for a circular pillbox kefor of the
three petal geometry representing Christianity’s trinity and the
flower-of-life. All emergent patterns are periodic and can be
used for artful tiling.

6 Appendices

6.1 Proof of Theorem 4.5: Convergence to
the mean

The derivative theorem of Fourier analysis indicates(
𝑀∏
𝑘=1

𝜕𝑖𝑘

𝜕𝑡𝑖𝑘𝑘

)
𝑔

(®𝑡 )
has a Fourier transform of(

𝑀∏
𝑘=1

( 𝑗2𝜋𝑢𝑘 )𝑖𝑘
)
𝐺 ( ®𝑢)

Thus

𝐺 ( ®𝑢) =

∫
®𝑡

[(∏𝑀
𝑘=1

𝜕𝑖𝑘

𝜕𝑡
𝑖𝑘
𝑘

)
𝑔

(®𝑡 ) ] 𝑒−𝑖2𝜋®𝑡𝑇 ®𝑢𝑑®𝑡∏𝑀
𝑘=1 ( 𝑗2𝜋𝑢𝑘 )𝑖𝑘

.

and

|𝐺 ( ®𝑢) | =

����∫®𝑡 [(∏𝑀
𝑘=1

𝜕𝑖𝑘

𝜕𝑡
𝑖𝑘
𝑘

)
𝑔

(®𝑡 ) ] 𝑒− 𝑗2𝜋®𝑡𝑇 ®𝑢𝑑®𝑡
����

(2𝜋)�̃� ∏𝑀
𝑘=1 |𝑢 |

𝑖𝑘
𝑘

=

≤

∫
®𝑡

����(∏𝑀
𝑘=1

𝜕𝑖𝑘

𝜕𝑡
𝑖𝑘
𝑘

)
𝑔

(®𝑡 ) ���� 𝑑®𝑡
(2𝜋)�̃� ∏𝑀

𝑘=1 |𝑢 |
𝑖𝑘
𝑘

=

=
𝐴

(2𝜋)�̃� ∏𝑀
𝑘=1 |𝑢 |

𝑖𝑘
𝑘

where

�̃� =
𝑀∑
𝑘=1

𝑖𝑘 . (27)

Continuing

𝜎𝑀 |𝐺 (𝜎 ®𝑢) | ≤ 𝐴𝜎𝑀

(2𝜋𝜎)�̃� ∏𝑀
𝑘=1 |𝑢 |

𝑖𝑘
𝑘

and

𝜎𝑀 |𝐺 (𝜎P ®𝑚) | ≤ 𝐴𝜎𝑀−�̃�

(2𝜋)�̃� ∏𝑀
𝑘=1 | (P)𝑘 ®𝑚 |𝑖𝑘

.

With all other parameters fixed, this expression tends to zero
for increasing 𝜎 when

𝑀 − �̃� < 0

or, using (27),
𝑀∑
𝑘=1

𝑖𝑘 > 𝑀

6.2 Proof of Theorem 4.8: Convergence to a
fixed periodic function

Applying the exponential kernel in (18) to (8) for scalar Q = 𝑇
gives

𝑥𝜎 (𝑡) =
∞∑

𝑚=−∞
exp

(
− 𝑡 − 𝑚𝑇

𝜎

)
𝜇(𝑡 − 𝑚𝑇)

= 𝑒−𝑡/𝜎
∞∑

𝑚=−∞
𝑒𝑚𝑇 /𝜎𝜇(𝑡 − 𝑚𝑇)
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Over the period 0 ≤ 𝑡 < 𝑇 ,

𝑥𝜎 (𝑡) = 𝑒−𝑡/𝜎
0∑

𝑚=−∞
𝑒𝑚𝑇 /𝜎 .

Using a geometric series

𝑥𝜎 (𝑡) =
𝑒−𝑡/𝜎

1 − 𝑒−𝑇 /𝜎

and
𝜁𝜎 (𝑡) = 𝑥𝜎 (𝑡) −

𝜎

𝑇
.

Express the exponentials as a truncated Taylor series.

𝜁𝜎 (𝑡) =
1 − 𝑡

𝜎 + 𝑡2

2𝜎2

𝑇
𝜎 − 𝑇 2

2𝜎2

− 𝜎

𝑇
.

After some manipulation

𝜁𝜎 (𝑡) −→
𝜎→∞

𝜎
(
𝑡 − 𝑇

2
)
+ 𝑡2

2

𝑇
(
𝜎 − 𝑇

2
)

−→
𝜎→∞

1
2
− 𝑡

𝑇

which is the desired result in (19).

6.3 Proof of (26): Cone convergence

The Struve functions used in (26) can be defined by their
Taylor series (Weisstein, 2020)

𝐻0 (𝑧) =
2
𝜋

∞∑
𝑘=0

(−1)𝑘 𝑧2𝑘+1

[(2𝑘 + 1)!!]2

and
𝐻1 (𝑧) =

2
𝜋

∞∑
𝑘=0

(−1)𝑘+1𝑧2𝑘

(2𝑘 − 1)!!(2𝑘 + 1)!! .

They have the following asymptotic behavior (Wolfram Re-
search, 2020b)

𝐻0 (𝑧) −→
|𝑧 |→∞

√
2
𝜋𝑧

sin
(
𝑧 − 𝜋

4

) (
1 +𝑂

(
1
𝑧2

))
and

𝐻1 (𝑧) −→
|𝑧 |→∞

2
𝜋

(
1 +𝑂

(
1
𝑧2

))
.

Likewise, the Bessel function has the asymptotic behavior
(Wolfram Research, 2020a)

𝐽0 (𝑧) −→
|𝑧 |→∞

√
2
𝜋𝑧

cos
(
𝑧 − 𝜋

4

) (
1 +𝑂

(
1
𝑧2

))

and
𝐽1 (𝑧) −→

|𝑧 |→∞

√
2
𝜋𝑧

cos
(
𝑧 − 3𝜋

4

) (
1 +𝑂

(
1
𝑧2

))
In light of these behaviors, inspection of (26) reveals the
𝐻1 (𝑧)𝐽0 (𝑧) term asymptotically dominates the 𝐻0 (𝑧)𝐽1 (𝑧)
term and

𝐻1 (2𝜋𝜌)𝐽0 (2𝜋𝜌) −→
𝜌→∞

2
𝜋2 𝜌

− 1
2 cos

(
2𝜋𝜌 − 𝜋

4

)
.

Thus

𝜎2𝐺 (𝜎 ®𝑢) −→
𝜎→∞

− 2
𝜋2

√
𝜎3

𝜌
cos

(
2𝜋𝜎𝜌 − 𝜋

4

)
from which (26) follows.
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Theorem 1 (Chaitin’s incompleteness theorem). For every
axiomatic proof system 𝑇 that can be encoded in at least 𝑁𝑇

bits, there is a constant 𝑐 such that the Kolmogorov complexity
of a bitstring 𝑏 cannot be proven to be larger than 𝑐.

We can phrase this in terms of an algorithm 𝐴𝑇 (𝑏, 𝑛, 𝑡) that
checks every possible proof in 𝑇 . When applied to a bitstring 𝑏
and a value 𝑛, 𝐴𝑇 (𝑏, 𝑛, 𝑡) outputs a proof in 𝑇 that 𝐾 (𝑏) > 𝑛,
or fails after 𝑡 steps and outputs a null, {},

∃𝑐 : ∀𝑏, 𝑛 ≥ 𝑐, 𝑡, 𝐴𝑇 (𝑏, 𝑛, 𝑡) = {}.

Proof. This is apparent by assuming the opposite,

∀𝑛, ∃𝑏, 𝑡, 𝐴𝑇 (𝑏, 𝑛, 𝑡) ≠ {}. (1)

We construct an algorithm 𝐵𝑛
𝑇 which, for a given 𝑛, performs a

breadth first search through all bitstrings 𝑏 and step amounts
𝑡 with 𝐴𝑇 (𝑏, 𝑛, 𝑡) until it finds a proof that 𝐾 (𝑏) > 𝑛. 𝐵𝑛

𝑇
then outputs 𝑏. By assumption in Equation 1, 𝐵𝑛

𝑇 will always
halt.

The Kolmogorov complexity of 𝐵𝑛
𝑇 is 𝐾 (𝐵𝑛

𝑇 ) ≤ 𝐾 (𝐴𝑇 )+log 𝑛+
𝛽, where 𝛽 is a constant for the overhead in 𝐵𝑛

𝑇 . The value of
𝛽 is independent of 𝑛, so will not vary as 𝑛 changes.

We then set 𝑛 = 𝑐 such that 𝐾 (𝐵𝑐
𝑇 ) ≤ 𝐾 (𝐴𝑇 ) + log 𝑛 + 𝛽 < 𝑐.

Since 𝐵𝑐
𝑇 will halt, it will output a 𝑏 such that 𝐾 (𝑏) > 𝑐.

However, 𝐾 (𝐵𝑐
𝑇 ) < 𝑐, resulting in a contradiction. Thus, for

all 𝑛 ≥ 𝑐 our assumption in Equation 1 is false.

Therefore, Theorem 1 is true. □

Theorem 2 (Can prove non-randomness). We define a func-
tion 𝑈𝑇 (𝑏, 𝑛, 𝑡) which outputs proofs in 𝑇 of the form 𝐾 (𝑏) <
ℓ(𝑏), which are proofs of non-randomness. It is parameterized
in the same way as 𝐴𝑇 (𝑏, 𝑛, 𝑡).

For all lengths 𝑐 of bitstrings 𝑏, there is a 𝑇 that can prove at
least one bitstring of length ℓ(𝑏) = 𝑐 is non-random,

∃𝑏∀𝑐, 𝑛, 𝑡,𝑈𝑇 (𝑏, 𝑛, 𝑡) ≠ {} ∧ ℓ(𝑏) = 𝑐.

Proof. We begin by assuming the contrary

∃𝑐′∀𝑐 > 𝑐′, 𝑛, 𝑡,𝑈𝑇 (𝑏, 𝑛, 𝑡) = {} ∧ ℓ(𝑏) = 𝑐. (2)

The following axiomatic system 𝑇1𝑠 is a falsification of Equa-
tion 2.

Axioms of 𝑇1𝑠 are:

1. 𝐾 ({1}20) < 20.

2. If 𝐾 (𝑏) < ℓ(𝑏), then 𝐾 (𝑏1) < ℓ(𝑏1).

3. If 𝐾 (𝑏) < ℓ(𝑏), then 𝑏 is non-random.

For any bitstring of 1s 𝑏1𝑠 where ℓ(𝑏1𝑠) ≥ 20, 𝑇1𝑠 can prove
the bitstring is non-random. It does this by incrementally
building a bitstring of 1s until the input is matched. The
axioms of 𝑇1𝑠 are true and all proofs are by induction, so all
proofs are true. Equation 2 is contradicted. □

Theorem 3 (Cannot generally prove non-randomness). There
is no axiomatic system that can decide the non-randomness of
every non-random bitstring.

Proof. While a dovetailing algorithm can output proofs of
non-randomness for every non-random bitstring, there is no
decision procedure that can decide whether the dovetailing al-
gorithm will halt. If there were, then this decision procedure
can enumerate all random bitstrings, contradicting Theorem
1. □

https://dx.doi.org/10.33014/issn.2640-5652.3.1.holloway.1
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Even though a human can trivially decide an arbitrarily long
bitstring of 1s is not random, Theorem 3 shows is an impossible
task for a generalized algorithm. Only a specific algorithm,
such as exemplified in Theorem 2, can do so.

This conclusion is a bit counter-intuitive, since it means that
without domain knowledge, an algorithm given an extremely
long sequence of 1s would be unsure whether the sequence is
completely random. When asked to predict the next digit, the
algorithm can only give an equal weighting to 0 and 1.

Proving the Derivative of sin(𝑥) Using
the Pythagorean Theorem and the
Unit Circle
Jonathan Bartlett
DOI: 10.33014/issn.2640-5652.3.1.bartlett.1

The derivative of sin(𝑥) (where 𝑥 is measured in radians) is
given in standard calculus as cos(𝑥). The proof for this is
usually based on a limit: lim

𝑞→0
sin(𝑞)

𝑞 = 1. The proof, put
simply, is:

𝑦 = sin(𝑥) (1)
𝑦 + d𝑦 = sin(𝑥 + d𝑥) (2)

d𝑦 = sin(𝑥 + d𝑥) − sin(𝑥) (3)
d𝑦 = sin(𝑥) cos(d𝑥) + cos(𝑥) sin(d𝑥) − sin(𝑥) (4)
d𝑦 = sin(𝑥) + cos(𝑥) sin(d𝑥) − sin(𝑥) (5)
d𝑦 = cos(𝑥) sin(d𝑥) (6)
d𝑦
d𝑥

= cos(𝑥) sin(d𝑥)
d𝑥

(7)
d𝑦
d𝑥

= cos(𝑥) (8)

While there is nothing wrong with the proof per se, I have
always found it unsatisfying, utilizing trigonometry identities
few students remember. Additionally, it is usually accompa-
nied with an explanation of the limit of sin 𝑥

𝑥 that is hard for
students to decipher. Therefore, this paper endeavors to pro-
vide a more straightforward proof based on more basic math-
ematical assertions, founded on the Pythagorean theorem and
the unit circle. It doesn’t remove the given limit in its en-
tirety, but rather gives more straightforward, calculus-oriented

reasoning for doing a similar operation. It is debatable how
much different it is in kind from the standard proof, but in
any case I think it is a more straightforward, interesting, and
instructive way of looking at it for students. It shows (a) the
power of calculus, (b) the power of differential thinking, and
(c) how discoveries can be made from basic principles.

Basic Assumptions

This proof will be analyzing triangles drawn on the unit circle.
On a unit circle, the hypotenuse will always be 1. Figure 1
shows the general setup. 𝑥 will be the angle measured in
radians, 𝑎 will be the adjacent, and 𝑝 will be the opposite.

Figure 1: A Triangle Inscribed Onto a Unit Circle

The Pythagorean theorem gives the following:

𝑎2 + 𝑝2 = 1 (9)
𝑝2 = 1 − 𝑎2 (10)
𝑎2 = 1 − 𝑝2 (11)

(12)

Since the hypotenuse is 1, sin(𝑥) = 𝑝 and cos(𝑥) = 𝑎. The
derivative of sin(𝑥) with respect to 𝑥, therefore, will be d𝑝

d𝑥 .
Therefore, the proof will be successful if it can demonstrate
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the following equivalency:

d𝑝
d𝑥

= 𝑎 (13)

Differential Analysis

Taking Figure 1 and budging the angle by d𝑥 yields the picture
shown in Figure 2.

Figure 2: Changes in the Triangle Based on d𝑥

A few important notes on Figure 2:

1. All changes are being expressed as adding differentials,
even if the differential itself is negative. This is why 𝑎+d𝑎
in the graph is shorter than 𝑎 on its own.

2. Since this is the unit circle, the angle change is identical
to the circumference change (since the radius is 1, then
the circumference is 2𝜋, the number of radians in a circle).

3. Since the change is infinitesimal, and this is a smooth and
continuous figure, then the change on the differential is
linear. In other words, the picture is zoomed in enough
that the arc joining the two triangles can be treated as if
it were a straight line.1

1Note that this is basically equivalent to the limit lim
𝑞→0

sin(𝑞)
𝑞 , but

Because of this last point, the length of d𝑥 can be determined
using the distance formula, where the horizontal and vertical
changes are simply given by d𝑎 and d𝑝:

d𝑥 =
√

d𝑝2 + d𝑎2 (14)

Finally, the differential of (9) can be taken to come up with:

𝑎2 + 𝑝2 = 1
2𝑎 d𝑎 + 2𝑝 d𝑝 = 0 (15)
𝑎 d𝑎 + 𝑝 d𝑝 = 0 (16)

𝑎 d𝑎 = −𝑝 d𝑝 (17)

d𝑎 = − 𝑝
𝑎

d𝑝 (18)

Making the Proof

Starting with (14), substitutions and simplifications can be
made as follows:

d𝑥 =
√

d𝑝2 + d𝑎2 (19)

=

√
d𝑝2 +

(
− 𝑝
𝑎

d𝑝
)2

(20)

=

√
d𝑝2 + 𝑝2

𝑎2 d𝑝2 (21)

=

√
d𝑝2 + 1 − 𝑎2

𝑎2 d𝑝2 (22)

=

√
d𝑝2 + d𝑝2

𝑎2 − d𝑝2 (23)

=

√
d𝑝2

𝑎2 (24)

d𝑥 = d𝑝
𝑎

(25)

Note that (25) could also have been negative. Inspection of
Figure 2 shows that d𝑝 will always have the same sign as 𝑎
(increasing until 𝑎 is zero, then decreasing while 𝑎 is negative).
Therefore, choosing the positive square root is the valid choice.

As stated at the beginning, the goal is to figure out an alter-
native reading of d𝑝

d𝑥 . Using (25), this can be simplified as
follows:

d𝑝
d𝑥

=
d𝑝
d𝑝
𝑎

=
d𝑝
1

𝑎

d𝑝
= 𝑎 (26)

As shown in (13), this proves that the derivative of sin(𝑥) is
indeed cos(𝑥).
stated in a more straightforward way that is repeatedly in calculus think-
ing.
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What is significant about this proof is that it relies entirely on
the basics—the Pythagorean theorem, the unit circle, the def-
inition of sine and cosine, the definition of the radian measure
of an angle, the distance formula, and the power rule.

A Response to Clunn’s Axioms of
Morality
J R Miller
DOI: 10.33014/issn.2640-5652.3.1.miller.1

This article offers a brief critique of Clunn’s foundationalism
which grounds moral decision making in what he calls the
three fundamental axioms of existence, consciousness, and
identity (Clunn, 2019). It shows how his commitment to
neo-Platonism, or possibly pantheism, creates at least three
incoherencies wherein a priori is a posteriori, individuality is
an illusion, and objective morality is subjective. For Clunn’s
moral philosophy to offer practical value, these internal con-
flicts must be resolved.

Introduction

In his article, Axioms of Morality, Clunn argues that morality
is an a priori truth that is objectively known to every person.
He believes that the fundamental axioms of existence, con-
sciousness and identity make life itself the ultimate objective
standard for each person’s subjective moral choices. There-
fore, as a general rule, any moral choice which benefits life in
general is a moral good. Any moral choice which hurts life in
general is a moral evil. Clunn rejects selfishness and utilitarian-
ism as viable methods for choosing what is good. Instead, he
argues that our individual choices must be guided by what he
considers the four cardinal virtues defined by history: justice,
prudence, temperance and courage.

Finding an objective ground for moral good is a daunting task
for any philosopher. And while Clunn’s three axioms are im-
portant, the grounding for his overarching moral philosophy is
problematic. For Clunn, every person shares in the same a pri-
ori universal consciousness which is a nonreductive emergent
property of the biological structures that define humanness.
If it is true that existence, consciousness and identity exist
a priori to human life in some form of neo-Platonic realm—

or possibly in a pantheistic universe—at least three internal
conflicts arise.

Conflict #1: A Priori is A Posteriori

Clunn leans heavily on Ayn Rand for defining his axioms but
departs from Rand who taught that consciousness and morality
are a posteriori. This distinction is critical for Clunn as he
hopes to sustain his commitment to both objective morality
and free will. He writes, “At the end of the day, morality is
about free will, choices, and decisions. These things all exist
within our consciousness (45).” Here is where the incoherence
first manifests. By definition, a priori means that morality
must exist independent of any person’s experience. Yet, Clunn
also presumes that morality exists through the exercise of one’s
free will. Given these claims, morality must also be a posteriori
because it depends upon how each individual person exercises
their free will. Clunn’s presupposition of a priori morality may
be preserved if he assumes free will is also an expression of the
a priori universal consciousness. However, this assumption
leads to a second conflict for how Clunn defines identity.

Conflict #2: Individuality is an Illusion

For Clunn, consciousness is not a property of personhood, but
an emergent property of the physical realm that existed be-
fore any individual. That is to say, all humans share in the
one nonreductive a priori universal consciousness. At the same
time, Clunn argues that the term “I” is an expression of ratio-
nal thought which establishes one’s specific identity within the
universal consciousnesses. But even if “I” establishes my per-
sonal existence, it remains an existence only within the larger
axiom of existence. It seems to follow from Clunn’s own defini-
tions that the perception of individuality, and by extension free
choice, is only an illusion. This creates at least one significant
internal conflicts for Clunn’s axioms.

Clunn argues that the consequences of our decisions are experi-
enced only within the realm of personal consciousness, which
no other person can observe. In contrast, Clunn says that
we can observe existence. Yet, for Clunn, morality does not
manifest in the axiom of existence. However, if each person’s
consciousness is a shared a priori reality, how is it beyond my
powers of observation? If I can have awareness of my own
consciousness, and that consciousness is tied to the universal,
then by definition I must also have access to understanding
the consciousness of others because they too are tied to the
same universal axiom. Even more, if consciousness is an emer-
gent property of existence, how does it remain independent of
existence as it relates to morality? This incoherence leads to
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the final issue addressed herein regarding Clunn’s claim that
objective morality exists.

Conflict #3: Objective Morality is Subjective

According to Clunn, the goal of his work is to establish a sim-
ple way for people to make moral choices that do not rely on
some deeply esoteric philosophy. While this goal is laudable,
Clunn’s claim to objective moral reality remains frustratingly
subjective. Even if we grant that consciousness is a funda-
mental axiom and that morality exists in some neo-Platonic
form, this says nothing about how we should evince this un-
observable moral realm. How does Clunn’s foundationalism
solve the is/ought problem? Clunn concedes that even given
his belief in an objective moral realm, “there is not a physical
imperative to adhere to it (45).” In the end, Clunn’s moral-
ity seems like a philosophically complex version of the equally
impractical moral trope, ‘follow your heart.’

Clunn’s claim to objective morality ends in a confusing subjec-
tivity. He writes, “I don’t prescribe here any specific actions
that a human should take to be moral or immoral. Specific ac-
tions can and should be subjective to each individual (44–45).”
Now to suggest that morality is objective, but all individual ac-
tions are subjective and beyond judgement from others only
begs the question about what it means to value life? Clunn
is aware that his dualist morality leads to moral confusion and
leaves open the argument that ‘might makes right.’ To evade
this looming problem, he asserts that consciousness is an emer-
gent function of existence, but he fails to show how this claim
logically undermines the ‘might makes right’ philosophy. Even
worse, Clunn admits that taking life is unjust, but believes his
own willingness to take a human life is virtuous. He writes,
“I have no qualms, nor does my morality, with taking a life if
that life is deciding to destroy other lives (45).” But if, as he
claims, there is no basis to judge the conscientious free moral
choice of another person, on what foundation—outside of his
own subjective opinion—does Clunn decide it is right to end
the life of another person? Maybe the person Clunn chose
to kill had a reason within their own mind that justified their
choice to take a life. Maybe they killed in the hope that their
act would serve the higher virtue of protecting lives. On what
ground does Clunn judge their act as an evil? And what if
my subjective morality tells me that Clunn’s choice to kill is
wrong? What would keep me from continuing this same cy-
cle of violence? How can Clunn claim to preserve the general
principle of life, without protecting the individual life of each
person?

Conclusion

This article offered a brief critique of Clunn’s foundationalism
which grounds moral decision making in what he calls the three
fundamental axioms of existence, consciousness, and identity.
It showed how his commitment to neo-Platonism, or possibly
pantheism, creates at least three incoherencies wherein a priori
is a posteriori, individuality is an illusion, and objective morality
is subjective. For Clunn’s moral philosophy to offer practical
value, these internal conflicts must be resolved.

Clunn, M (2019). “Axioms of Morality”. In: Communications
of the Blyth Institute 1.1, pp. 43–45. doi: 10.33014/
issn.2640-5652.1.1.clunn.1.

Is Information Content a Single, Static
Quantity?
Jorge Fernandez
DOI: 10.33014/issn.2640-5652.3.1.fernandez.1

Information is instinctively and commonly regarded as a single,
static entity. For example, upon learning that ‘her name is Su-
san’ we would say that we have ‘acquired information’. Taken
that way, an instance of information naturally leads to a sin-
gle, static quantity of information. Thus, if asked how much
information is contained in learning that a flip of a fair coin
yielded a ‘heads’, the typical answer is ‘1 bit of information’
(− log2

( 1
2
)
= 1 bit).

Seasoned information theorists are, of course, aware that there
is more to it than that. Yet even those individuals usually op-
erate within a paradigm that is most often not as comprehen-
sive as it needs to be to address the full information picture.
Thus, ‘1 bit’ merely indicates the number of possible states
(21 = 2 states). Alone, this number is indifferent regarding
deeper, significant aspects of information such as meaning.

There is an attribute about information that is even more fun-
damental than those considerations. I am specifically referring
to the fact that before information may be measured it must
first manifest as a specific kind of information, and that man-
ifestation always occurs within a fixed context. If any critical
element of the context is changed, the information that is
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Blyth Institute Director Publishes
Book on Introductory Electronics

The director of the Blyth Institute, Jonathan Bartlett, recently
published an introductory electronics book titled Electronics
for Beginners: A Practical Introduction to Schematics, Cir-
cuits, and Microcontrollers, published by Apress. The book
is usable either as a textbook or as a self-study guide, con-
taining numerous examples as well as exercises at the end of
each chapter. It hits a midway point between typical hobbyist
and professional electronics books, providing enough technical
details for hobbyists to really understand what is going on, but
not requiring a heavy mathematics background.

Blyth Institute Members Interviewed
on the MindMatters Podcast

Blyth Institute fellow Eric Holloway and director Jonathan
Bartlett were guests on the MindMatters podcast. The Mind-
Matters podcast provides news and commentary on technology
with a focus on artificial intelligence. In this series of episodes,
Holloway and Bartlett looked at both the promise and failings
of artificial intelligence. The series covered both the top ten
uses and advances of AI, as well as the “dirty dozen” misap-
plications, overhypes, and failings of the same.

The MindMatters Podcast can be found at https://
mindmatters.ai/podcast/.

Fine Tuning Picks Up Momentum in
Biology

The concept of “fine tuning” has long been a standard part
of physics and cosmology. It first made its debut in 1961 with
Robert Dicke pointing out that certain forces in physics have
to be tuned within very narrow parameters for life to exist
anywhere (Dicke, 1961). To the present day, the concept of
fine tuning is a source of active research and discussion in the
physics community.

Recently, however, the concept of fine tuning has started to
emerge in many aspects of biology as well. The discussions
around fine tuning began with a focus on the genetic code
and the codon table. Philip and Freeland (2011) noted that,
while there are many biologically possible codon tables, the one
that actually occurrs in biology is comparatively highly tuned
to match the spectrum of available amino acids. Others, such
as Castro-Chavez (2012), have pointed out that the codon
table has a lot of internal, logically-consistent structure to
it. The discussion of various ways that the genetic code has
been optimized continues to produce new insights (José and
Zamudio, 2020).

https://mindmatters.ai/podcast/
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Other aspects of fine tuning have been discovered as well. A
lecture by William Bialek gives an overview of many biological
systems which operate at or very near the highest resolution
allowed by physics (Bialek, 2015). This included discoveries
such as the ability for bacteria to count individual molecules
on their surfaces and the ability of a retinal cell to respond to
a single photon.

The growth of this phenomena has caused some biologists to
start approaching the question of fine tuning with more rigor.
Recently, the Journal of Theoretical Biology published a pa-
per which reviewed various statistical approaches of analyzing
fine tuning quantitatively (Thorvaldsen and Hössjer, n.d.), and
notes that, while there are many open questions, the field has
already gone in many promising directions.

New Book on Walter Bradley’s Life
and Legacy

Walter Bradley has had a significant impact on members of
The Blyth Institute. He was the plenary speaker at our first
conference, discussing both the fine tuning of the laws of
physics as well as his work in using technology to help the
poor in rural economies.1

In August of this year, Erasmus Press published a book about
his life titled For a Greater Purpose: The Life and Legacy of
Walter Bradley, written by Robert J. Marks and William A.
Dembski. This book covers not only his academic and engi-
neering achievements, but also his personal connections with
students, faculties, and other organizations, and the impact
that his life has had on all of these.

1His talk, “Unique Ways for Engineers to Bring Healing,” can be found
at https://youtu.be/X92BDBku6g4.
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